Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 998
Filtrar
1.
Plant J ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573794

RESUMO

Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.

2.
Int J Orthop Trauma Nurs ; 54: 101095, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38599150

RESUMO

AIMS: In the early stage, we developed an intelligent measurement APP for diabetic foot ulcers, named Diabetic Foot Smart APP. This study aimed to validate the APP in the measurement of ulcer area for diabetic foot ulcer (DFU). METHODS: We selected 150 DFU images to measure the ulcer areas using three assessment tools: the Smart APP software package, the ruler method, and the gold standard Image J software, and compared the measurement results and measurement time of the three tools. The intra-rater and inter-rater reliability were described by Pearson correlation coefficient, intra-group correlation coefficient, and coefficient of variation. RESULTS: The Image J software showed a median ulcer area of 4.02 cm2, with a mean measurement time of 66.37 ± 7.95 s. The ruler method showed a median ulcer area of 5.14 cm2, with a mean measurement time of 171.47 ± 46.43 s. The APP software showed a median ulcer area of 3.70 cm2, with a mean measurement time of 38.25 ± 6.81 s. There were significant differences between the ruler method and the golden standard Image J software (Z = -4.123, p < 0.05), but no significant difference between the APP software and the Image J software (Z = 1.103, p > 0.05). The APP software also showed good inter-rater reliability and intra-rater reliability, with both reaching 0.99. CONCLUSION: The Diabetic Foot Smart APP is a fast and reliable measurement tool with high measurement accuracy that can be easily used in clinical practice for the measurement of ulcer areas of DFU. TRIAL REGISTRATION: Chinese clinical trial registration number: ChiCTR2100047210.

3.
Plant Physiol Biochem ; 210: 108600, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38593488

RESUMO

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.

4.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569041

RESUMO

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Assuntos
Doenças Inflamatórias Intestinais , Prostaglandinas , Humanos , Epitélio/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Fibroblastos/metabolismo
5.
Opt Express ; 32(6): 8684-8696, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571120

RESUMO

We propose a simple dynamical method to realize fast enantio-specific state transfer (ESST) of chiral molecules. Driven by three external electromagenetic fields, the chiral molecules are modeled as cyclic three-level systems, where the overall phase differs by π for the left- and right-handed chiral molecules. We unveil that the ESST is allowed when the amplitudes of three Rabi frequencies in the cyclic three-level systems are equal. Our method is robust and highly efficient in the sense that the external fields can have arbitrary waveforms. This thus provides the opportunity of simplifying the experimental implementations of ESST through pulse design.

6.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627563

RESUMO

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Assuntos
Secas , Superóxido Dismutase , Prolina , China , Folhas de Planta/química , Fotossíntese/fisiologia , Plântula/fisiologia , Árvores , Água/análise
7.
Environ Sci Technol ; 58(16): 6890-6899, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606954

RESUMO

Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.

8.
Front Med (Lausanne) ; 11: 1372984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572160

RESUMO

[This corrects the article DOI: 10.3389/fmed.2023.1285142.].

9.
Plant Sci ; 344: 112082, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583807

RESUMO

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.

10.
J Hazard Mater ; 471: 134282, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38657509

RESUMO

Microplastics (MPs) pose a threat to farmland soil quality and crop safety. MPs exist widely in food legumes farmland soil due to the extensive use of agricultural film and organic fertilizer, but their distribution characteristics and their impact on soil environment have not been reported. The abundance and characteristics of MPs, soil physical and chemical properties, and bacterial community composition were investigated in 76 soil samples from five provinces in northern China. The results showed that the abundance of MPs ranged from 1600 to 36,200 items/kg. MPs in soil were mostly fibrous, less than 0.2 mm, and white. Rayon, polyester and polyethylene were the main types of MPs. The influences of MPs on soil physicochemical properties and bacterial communities mainly depended on the type of MPs. Notably, polyethylene significantly decreased the proportion of silt particles, and increased the nitrate nitrogen content as well as the abundance of MPs-degrading bacteria Paenibacillus (p < 0.05). Moreover, bacteria were more sensitive to polyesters in soil with low concentration of organic matter. This study indicated that MPs in food legumes farmland soil presented a higher-level. And, they partially altered soil physicochemical properties, and soil bacteria especially in soil with low organic matter.

11.
Sex Med ; 12(1): qfae008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38487305

RESUMO

Background: Aildenafil citrate is a potent and selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5, developed for the treatment of erectile dysfunction (ED). Aim: This study aimed to assess the pharmacokinetics, safety, and tolerability of aildenafil citrate tablets after multiple doses in healthy Chinese males. Methods: Twenty participants were divided into 2 groups, 10 participants each. Participants were administered multiple doses of aildenafil citrate tablets at 30 and 60 mg. Outcomes: The safety evaluation was based on clinical symptoms and adverse events. Concentrations of aildenafil and its key metabolites (M1, M5, and M12) in human serum were measured by liquid chromatography-tandem mass spectrometry. Results: Pharmacokinetic analysis showed rapid absorption and elimination of aildenafil, with a median time to maximum serum concentration of 1 hour and mean terminal half-lives of 2.75 and 3.26 hours in the respective dose groups. The mean maximum concentration was proportional to the aildenafil dose in the range of 30 to 60 mg, although the area under the curve was not proportional for serum concentration vs time 0 to the last measurable time point (24 hours). Multiple doses of aildenafil were well tolerated, with 60.0% of men experiencing treatment-emergent adverse events, notably myalgia and fatigue, particularly in the 60-mg group. Clinical Implications: Aildenafil citrate tablets demonstrated favorable tolerability with once-daily administration over the clinical dose range. The occurrence of myalgia and fatigue was more prevalent in the 60-mg group. From a pharmacokinetic perspective, optimal administration of aildenafil citrate tablets appears to be 1 hour before sexual intercourse in men with ED. Strengths and Limitations: This study presents robust safety and pharmacokinetic data at expected therapeutic doses, unaffected by clinical factors. The efficacy of aildenafil citrate tablets warrants further validation in individuals with ED. Conclusion: Aildenafil citrate tablets exhibited good tolerability in healthy Chinese males following multiple doses at 30 and 60 mg. The 60-mg group showed an increased incidence of myalgia and fatigue, suggesting the need for heightened clinical vigilance. The mean maximum concentration, but not the area under the curve, displayed dose proportionality within the 30- to 60-mg dose range, and no significant drug accumulation was observed with repeated daily administration. Clinical Trial Registration: CTR20192473 (http://www.chinadrugtrials.org.cn).

12.
Arthritis Rheumatol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433594

RESUMO

OBJECTIVE: The goal was to investigate the role and intracellular regulatory mechanisms of double-negative T (DNT) cells in the pathogenesis of systemic lupus erythematosus (SLE). METHODS: DNT cells were assessed in murine models, patients with SLE, and controls using flow cytometry (FCM). DNT cells from either resiquimod (R848) or vehicle-treated C57BL/6 (B6) mice were cultured with B cells from R848-treated mice to explore functions. Differential mechanistic target of rapamycin (mTOR) pathway signaling in DNT cells measured using FCM and quantitative polymerase chain reaction was validated by rapamycin inhibition. Candidate lipid metabolites detected using liquid chromatography with electrospray ionization mass spectrometry/mass spectrometry were functionally assessed in DNT cell cultures. RESULTS: DNT cells were markedly increased in both spontaneous and induced mouse lupus models and in patients with SLE. Expanded DNT cells from R848-treated B6 mice produced elevated interleukin (IL)-17A and IgG with increased germinal center B (GCB) cells. Expansion of DNT cells associated with activation of mTORC1 pathway that both IL-17A levels and the number of DNT cells exhibited dose-dependent reduction with rapamycin treatment. Lipidomics studies revealed differential patterns of lipid metabolites in T cells of R848-treated mice. Among candidate metabolites, elevated phosphatidic acid (PA) that was partially controlled by phospholipase D2 increased the expression of the mTORC1 downstream target p-S6 and positively expanded IL-17A-producing DNT cells. Similarly, elevated proportions of circulating DNT cells in patients with SLE correlated with disease activity and proteinuria, and IL-17A secretion was elevated after in vitro PA stimulation. CONCLUSION: The accumulation of PA in T cells could activate the mTORC1 pathway, promoting DNT cell expansion and IL-17A secretion, resulting in GCB cell abnormalities in lupus.

13.
Adv Sci (Weinh) ; : e2306950, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441365

RESUMO

Intracellular proteome aggregation is a ubiquitous disease hallmark with its composition associated with pathogenicity. Herein, this work reports on a cell-permeable photosensitizer (P8, Rose Bengal derivative) for selective photo induced proximity labeling and crosslinking of cellular aggregated proteome. Rose Bengal is identified out of common photosensitizer scaffolds for its unique intrinsic binding affinity to various protein aggregates driven by the hydrophobic effect. Further acetylation permeabilizes Rose Bengal to selectively image, label, and crosslink aggregated proteome in live stressed cells. A combination of photo-chemical, tandem mass spectrometry, and protein biochemistry characterizations reveals the complexity in photosensitizing pathways (both Type I & II), modification sites and labeling mechanisms. The diverse labeling sites and reaction types result in highly effective enrichment and identification of aggregated proteome. Finally, aggregated proteomics and interaction analyses thereby reveal extensive entangling of proteostasis network components mediated by HSP70 chaperone (HSPA1B) and active participation of autophagy pathway in combating proteasome inhibition. Overall, this work exemplifies the first photo induced proximity labeling and crosslinking method (namely AggID) to profile intracellular aggregated proteome and analyze its interactions.

14.
ACS Omega ; 9(7): 8425-8433, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405439

RESUMO

Lung cancer poses a significant threat to human health. Surgical intervention is the preferred treatment modality for lung cancer, but a large number of patients are deprived of the opportunity for surgery for various reasons and are compelled to undergo radiotherapy and chemotherapy, which entail systemic adverse reactions. In recent years, with the advancement of nanomedicine, chemodynamic therapy (CDT) based on free radicals has been extensively investigated. In this study, we fabricated copper-citrate-chitosan composite nanoparticles (CuCC NPs) by encapsulating copper-citrate complexes with natural chitosan polymers, resulting in a substantial reduction in the biotoxicity of copper ions. The CuCC NPs selectively accumulated in tumor tissues through the enhanced permeability and retention effect (EPR) and gradually degraded within the acidic and glutathione (GSH)-rich microenvironment of the tumor, thereby releasing the loaded copper ions. Through CDT, the copper ions converted the overexpressed hydrogen peroxide (H2O2) in the tumor tissue into hydroxyl radicals (•OH), leading to the eradication of tumor cells. In animal experiments, CuCC NPs exhibited remarkable efficacy in CDT. Further histopathological and hematological analyses demonstrated that CuCC NPs could induce substantial apoptosis in tumor tissues while maintaining an extremely high level of safety.

15.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396725

RESUMO

The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Íons/metabolismo , Sódio/metabolismo , Homeostase , Adenosina Trifosfatases/metabolismo , Antiporters/metabolismo , Fotossíntese/genética , Regulação da Expressão Gênica de Plantas
16.
Sci Total Environ ; 919: 170614, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316308

RESUMO

Prenatal exposure to phthalates (PAEs) is ubiquitous among Chinese neonates. PAEs entering the body will be transformed to various hydrolyzed and oxidated PAE metabolites (mPAEs). PAEs and mPAEs exposure may lead to adverse birth outcomes through disruption of multiple hormone signaling pathways, induction of oxidative stress, and alterations in intracellular signaling processes. In this study, the concentrations of 11 mPAEs in 318 umbilical cord serum samples from neonates in Jinan were quantified with HPLC-ESI-MS. Multiple linear regression, Bayesian kernel machine regression, and quantile g-computation models were utilized to investigate the effects of both individual mPAE and mPAE mixture on birth outcomes. Stratified analysis was performed to explore whether these effects were gender-specific. mPAE mixture was negatively associated with birth length (BL) z-score, birth weight (BW) z-score, head circumference (HC) z-score, and ponderal index (PI). Mono(2-ethylhexyl) phthalate (MEHP) manifested negative associations with BL(z-score), BW(z-score), HC(z-score), and PI, whereas mono(2-carboxymethylhexyl) phthalate (MCMHP) was negatively associated with BW(z-score) and PI within the mPAE mixture. Stratified analysis revealed that the negative associations between mPAE mixture and four birth outcomes were attenuated in female infants, while the positive impact of mono(2-ethyl-5carboxypentyl) phthalate (MECPP) on BL(z-score) and BW(z-score) could be detected only in females. In summary, our findings suggest that prenatal exposure to phthalates may be associated with intrauterine growth restriction, and these effects vary according to the gender of the infant.


Assuntos
Dietilexilftalato/análogos & derivados , Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Recém-Nascido , Humanos , Feminino , Teorema de Bayes , Ácidos Ftálicos/metabolismo , Peso ao Nascer , Exposição Ambiental , Poluentes Ambientais/metabolismo
17.
Water Res ; 253: 121287, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387264

RESUMO

Biological aqua crust (biogenic aqua crust-BAC) is a potentially sustainable solution for metal(loid) bioremediation in global water using solar energy. However, the key geochemical factors and underlying mechanisms shaping microbial communities in BAC remain poorly understood. The current study aimed at determining the in situ metal(loid) distribution and the key geochemical factors related to microbial community structure and metal(loid)-related genes in BAC of a representative Pb/Zn tailing pond. Here we showed that abundant metal(loid)s (e.g. Pb, As) were co-distributed with Mn/Fe-rich minerals (e.g. biogenic Mn oxide, FeOOH) in BAC. Biogenic Mn oxide (i.e. Mn) was the most dominant factor in shaping microbial community structure in BAC and source tailings. Along with the fact that keystone species (e.g. Burkholderiales, Haliscomenobacter) have the potential to promote Mn ion oxidization and particle agglomeration, as well as Mn is highly associated with metal(loid)-related genes, especially genes related to As redox (e.g. arsC, aoxA), and Cd transport (e.g. zipB), biogenic Mn oxides thus effectively enhance metal(loid) remediation by accelerating the formation of organo-mineral aggregates in biofilm-rich BAC system. Our study indicated that biogenic Mn oxides may play essential roles in facilitating in situ metal(loid) bioremediation in BAC of mine drainage.


Assuntos
Compostos de Manganês , Metais Pesados , Microbiota , Manganês , Chumbo , Bactérias/genética , Óxidos , Minerais
18.
Sci Total Environ ; 923: 171305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423340

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are known to be linked with dyslipidemia. Between March and June 2022, we collected 575 fasting serum samples from individuals without occupational exposure in Jinan, China. Eighteen PFASs were analyzed using UHPLC-Orbitrap MS. Multiple linear regression (MLR), Bayesian kernel machine regression (BKMR), and Quantile g-computation (QGC) models were utilized to assess the effects of both individual PFAS and PFAS mixtures on serum lipid levels, including triglycerides (TG), cholesterol (CHO), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The PFAS mixture, composed of perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid (PFTrDA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonate (PFOS), and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), showed a positive association with CHO and LDL levels, while no distinct trend was noted in HDL and TG levels about changes in PFAS mixtures levels in BKMR and QGC models, adjusted for gender, age, BMI, occupation, and educational level. The effects of individual PFASs on lipid levels were in general consistent across MLR, BKMR and QGC models. PFUnDA and PFTrDA demonstrated greater impacts on blood lipid levels compared to other PFAS, albeit with varied directional effects. Age-stratified analysis revealed PFAS mixture effect was more pronounced in participants aged higher than 40. No obvious trend in lipid levels with changes in PFAS mixture levels in participants with age ranged from 18 to 40, while positive association between PFAS mixture and CHO and LDL was detected in participants aged higher than 40.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Ácidos Graxos , Fluorocarbonos , Humanos , Idoso , Estudos Transversais , Teorema de Bayes , Lipídeos
19.
Nanoscale ; 16(13): 6464-6476, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415750

RESUMO

The development of flexible pressure sensors for monitoring human motion and physiological signals has attracted extensive scientific research. However, achieving low monitoring limits, a wide detection range, large bending stresses, and excellent mechanical stability simultaneously remains a serious challenge. With the aim of developing a high-performance capacitive pressure sensor (CPS), this paper introduces the successful preparation of a single-walled carbon nanotube (SWNT)/polydimethylsiloxane (S-PDMS) composite dielectric with a foam-like structure (high permittivity and low elasticity modulus) and MXene/SWNT (S-MXene) composite film electrodes with a micro-crumpled structure. The above structurally modified CPS (SMCPS) demonstrated an excellent response output during pressure loading, achieving a wide pressure detection range (up to 700 kPa), a low detection limit (16.55 Pa), fast response/recovery characteristics (48/60 ms), enhanced sensitivity across a wide pressure range, long-term stability under repeated heavy loading and unloading (40 kPa, >2000 cycles), and reliable performance under various temperature and humidity conditions. The SMCPS demonstrated a precise and stable capacitive response in monitoring subtle physiological signals and detecting motion, owing to its unique electrode structure. The flexible device was integrated with an Internet of Things module to create a smart glove system that enables real-time tracking of dynamic gestures. This system demonstrates exceptional performance in gesture recognition and prediction with artificial intelligence analysis, highlighting the potential of the SMCPS in human-machine interface applications.

20.
Compr Rev Food Sci Food Saf ; 23(2): e13308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369927

RESUMO

Bacillus smithii is a thermophilic Bacillus that can be isolated from white wine, hot spring soil, high-temperature compost, and coffee grounds, with various biofunctions and wide applications. It is resistant to both gastric acid and high temperature, which makes it easier to perform probiotic effects than traditional commercial probiotics, so it can maintain good vitality during food processing and has great application prospects. This paper starts with the taxonomy and genetics and focuses on aspects, including genetic transformation, functional enzyme production, waste utilization, and application in the field of food science as a potential probiotic. According to available studies during the past 30 years, we considered that B. smithii is a novel class of microorganisms with a wide range of functional enzymes such as hydrolytic enzymes and hydrolases, as well as resistance to pathogenic bacteria. It is available in waste degradation, organic fertilizer production, the feed and chemical industries, the pharmaceutical sector, and food fortification. Moreover, B. smithii has great potentials for applications in the food industry, as it presents high resistance to the technological processes that guarantee its health benefits. It is also necessary to systematically evaluate the safety, flavor, and texture of B. smithii and explore its biological mechanism of action, which is of great value for further application in multiple fields, especially in food and medicine.


Assuntos
Bacillus , Probióticos , Estudos Prospectivos , Bacillus/genética , Bacillus/metabolismo , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...